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Let’s consider two matrices A, B
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A toy example 
Let’s consider two matrices A, B



Overview

● How to represent computation 
● How to search over computations
● Distributed representation of computation



Computation encoding A*B

Symbolic representation A*B based on monomials



Computation encoding 
sum(A*B). Takes O(n^3) time.

Symbolic representation sum(A*B) based on monomials



Computation encoding 
sum(sum(A, 1)*B). Takes O(n^2) time

Symbolic representation sum(sum(A, 1)*B) based on monomials



Allowed computations

Grammar rules :
● matrix multiplication
● elementwise multiplication
● transposition
● sum, over columns and rows
● addition, multiplication by constant
● we can consider arbitrary bigger grammar ….
e.g. : (((sum((sum((A * (A’)), 1)), 2)) * ((A * (((sum((A’), 1)) * A)’))’)) * A)



Many computations are in this family

● E.g. finite Taylor expansion of any function ….



Many computations are in this family

● E.g. finite Taylor expansion of any function ….
for instance, partition function of Restricted 
Boltzmann Machine (RBM)



Exact solution for k=1 
(first term in Taylor series)

this is a polynomial computation vs exponential computation in the 
naive algorithm



this is a polynomial computation vs exponential computation in the 
naive algorithm

Exact solution for k=2 
(second term in Taylor series)



How to find equivalent computations ?



How to find equivalent computations ?

Manual methods fail 
(I have spend half a year on it).



Exact solution for k=6  (sneak preview) 
derived by our framework



Maybe machines should be searching 
for patterns in computation



Overview

● How to represent computation 
● How to search over computations
● Distributed representation of computation



Explosion of computation space
Polynomials of degree one in a matrix A:

Polynomials of degree two :

Space grows super-exponentially fast.



Prior over computation trees

● Explore space of computation efficiently
● Find equivalent expressions to the target one

○ But using operations with lower complexity

● Want to learn prior over sensible computations
○ Humans learn prior over proofs in mathematics



Searching over computation trees

Scheduler picks potential new expressions to 
append to current expressions

Scorer ranks each possibility (i.e. how likely 
they are to lead to the solution), using prior.  

We want to learn a good scorer.



Scoring strategies

● naive scorer don’t use any prior. All 
computations are equally probable

● n-gram models 

● learnt scorer (little bit about it at the end)



n-gram prior over trees 
Exemplary intermediate solution:

Build n-grams distribution from solutions of 
simpler expressions
● Patterns that worked before might be useful

Bi-grams:



Experiments:
5 families of related problems
●  
●  
● Symmetric polynomials, e.g.
● RBM-1 
● RBM-2



Family sum(AA^T)_k
Targets → Exemplary solution: 

● sum(A*A’) → (sum(((sum(A, 1)) .* (sum(A, 1))), 2)) 
● sum(A*A’*A) → (sum((sum((A .* (sum(((sum(A, 2)) .* A), 1))), 2)), 1)) 
● sum(A*A’*A*A’) → (sum((sum((A .* (sum(((sum((A .* (sum(A, 1))), 2)) .* A), 1))), 2)), 1))
● sum(A*A’*A*A’*A) →  (sum((sum((A .* (sum(((sum((A .* (sum(((sum(A, 2)) .* A), 1))), 2)) .* A), 1))), 2)), 

1))
● …

naive 1-gram 2-gram 3-gram 4-gram 5-gram

Hardest possible 
example to solve

10 11 >15 >15 >15 >15



Family (RBM-1)_k
Targets → Exemplary solution: 

●                        → 16.0 * (sum((sum(A, 2)), 1)) 

●                        → 8.0 * (sum(((sum(A, 1)) .* (sum(A, 1))), 2)) + 8.0 * ((sum((sum(A, 1)), 2)) .*                                      
                                     (sum((sum(A, 1)), 2)))

●                        → 12.0 * (sum((sum((A .* (sum(((sum((sum(A, 2)), 1)) .* A), 1))), 2)), 1)) + 4.0 *    
                                     (sum(((sum((sum(A, 2)), 1)) .* ((sum((sum(A, 2)), 1)) .* (sum(A, 2)))), 1))

naive 1-gram 2-gram 3-gram 4-gram 5-gram

Hardest possible 
example to solve

9 10 14 13 14 >15



Overview

● How to represent computation 
● How to search over computations
● Distributed representation of computation



The meaning of a word computation is 
described by the words computations 

accompanying it 



How we can represent a computation? 

● Vector representation for every computation
○ e.g. A^T = vector_1 , \sum(A^T, 1) = vector_2, 

● Want to learn how to compose their vector 
representations
○ i.e. ((A^T)^T)^T ~ vector_1, \sum(A, 2)^T ~ vector_2



Learnt representation with neural net
Recursive Neural network → RNN

No understanding of underlying mathematical 
operators (no grounding)



Learnt representation with RNN
Recursive Neural network → RNN

No understanding of underlying mathematical 
operators (no grounding)



Task - classify expressions
Example from A class:

Example from B class:

From which class is this example ?



Performance - expression classification

Degree k = 3 Degree k = 6

Test accuracy 100% 95.3%

Number of classes 12 1687



Learnt representation - tricks

● Initialization as identity + noise (critical)
● ReLU (previously people used tanh)
● Curriculum learning
● Prediction matrix has x100 learning rate 
● We update initial random vector of symbol



RNNs for a better discovery learning

● We have a real vector representation for any 
computations

● We use a linear classifier on such 
representation to train scorer 



Family sum(AA^T)_k  with RNN
RNN gives more diversified solutions (doesn’t just copy them), but it doesn’t perform 
as good as n-gram.
Targets → Exemplary solution of RNN: 

● sum(A*A’) → (sum((A * ((sum(A, 1))')), 1))
● sum(A*A’*A) → ((sum(A, 1)) * ((A') * (sum(A, 2))))
● sum(A*A’*A*A’) → ((((sum(A, 1)) * (A')) * A) * ((sum(A, 1))'))
● sum(A*A’*A*A’*A) →  ((sum(A, 1)) * ((A') * (A * ((A') * (sum(A, 2))))))

naive 5-gram RNN

Hardest possible 
example to solve

10 >15 ~15



Summary

● Simple statistical priors over computations 
like n-gram allows the discovery of many 
new math formulae

● Use neural nets to map computational 
expressions to continuous vectors
○ Also use for formulae discovery



Future work

● Computations = Knowledge representation = 
Mathematical proofs = Programs = etc. 
○ predictions on programs / program induction
○ explore space of mathematical proofs 

● Replace recursive neural network with 
recurrent ?



Q&A

● How to represent computation 
○ symbolic representation

● How to search over computations
● Distributed representation of computation

○ recursive networks
○ training tricks

Thank you. I am happy to take any question.


