
Learning to Discover
Efficient Mathematical

Identities
by Wojciech Zaremba,

Karol Kurach, and Rob Fergus
ref: http://arxiv.org/abs/1406.1584

http://arxiv.org/abs/1406.1584

A toy example
Let’s consider two matrices A, B

Naive computation takes O(n^3).

Naive computation (O
(n^3) time)

A toy example
Let’s consider two matrices A, B

Naive computation takes O(n^3).
Our framework found O(n^2) computation

Naive computation (O
(n^3) time)

Optimized computation
(O(n^2) time)

A toy example
Let’s consider two matrices A, B

Overview

● How to represent computation
● How to search over computations
● Distributed representation of computation

Computation encoding A*B

Symbolic representation A*B based on monomials

Computation encoding
sum(A*B). Takes O(n^3) time.

Symbolic representation sum(A*B) based on monomials

Computation encoding
sum(sum(A, 1)*B). Takes O(n^2) time

Symbolic representation sum(sum(A, 1)*B) based on monomials

Allowed computations

Grammar rules :
● matrix multiplication
● elementwise multiplication
● transposition
● sum, over columns and rows
● addition, multiplication by constant
● we can consider arbitrary bigger grammar ….
e.g. : (((sum((sum((A * (A’)), 1)), 2)) * ((A * (((sum((A’), 1)) * A)’))’)) * A)

Many computations are in this family

● E.g. finite Taylor expansion of any function ….

Many computations are in this family

● E.g. finite Taylor expansion of any function ….
for instance, partition function of Restricted
Boltzmann Machine (RBM)

Exact solution for k=1
(first term in Taylor series)

this is a polynomial computation vs exponential computation in the
naive algorithm

this is a polynomial computation vs exponential computation in the
naive algorithm

Exact solution for k=2
(second term in Taylor series)

How to find equivalent computations ?

How to find equivalent computations ?

Manual methods fail
(I have spend half a year on it).

Exact solution for k=6 (sneak preview)
derived by our framework

Maybe machines should be searching
for patterns in computation

Overview

● How to represent computation
● How to search over computations
● Distributed representation of computation

Explosion of computation space
Polynomials of degree one in a matrix A:

Polynomials of degree two :

Space grows super-exponentially fast.

Prior over computation trees

● Explore space of computation efficiently
● Find equivalent expressions to the target one

○ But using operations with lower complexity

● Want to learn prior over sensible computations
○ Humans learn prior over proofs in mathematics

Searching over computation trees

Scheduler picks potential new expressions to
append to current expressions

Scorer ranks each possibility (i.e. how likely
they are to lead to the solution), using prior.

We want to learn a good scorer.

Scoring strategies

● naive scorer don’t use any prior. All
computations are equally probable

● n-gram models

● learnt scorer (little bit about it at the end)

n-gram prior over trees
Exemplary intermediate solution:

Build n-grams distribution from solutions of
simpler expressions
● Patterns that worked before might be useful

Bi-grams:

Experiments:
5 families of related problems
●
●
● Symmetric polynomials, e.g.
● RBM-1
● RBM-2

Family sum(AA^T)_k
Targets → Exemplary solution:

● sum(A*A’) → (sum(((sum(A, 1)) .* (sum(A, 1))), 2))
● sum(A*A’*A) → (sum((sum((A .* (sum(((sum(A, 2)) .* A), 1))), 2)), 1))
● sum(A*A’*A*A’) → (sum((sum((A .* (sum(((sum((A .* (sum(A, 1))), 2)) .* A), 1))), 2)), 1))
● sum(A*A’*A*A’*A) → (sum((sum((A .* (sum(((sum((A .* (sum(((sum(A, 2)) .* A), 1))), 2)) .* A), 1))), 2)),

1))
● …

naive 1-gram 2-gram 3-gram 4-gram 5-gram

Hardest possible
example to solve

10 11 >15 >15 >15 >15

Family (RBM-1)_k
Targets → Exemplary solution:

● → 16.0 * (sum((sum(A, 2)), 1))

● → 8.0 * (sum(((sum(A, 1)) .* (sum(A, 1))), 2)) + 8.0 * ((sum((sum(A, 1)), 2)) .*
 (sum((sum(A, 1)), 2)))

● → 12.0 * (sum((sum((A .* (sum(((sum((sum(A, 2)), 1)) .* A), 1))), 2)), 1)) + 4.0 *
 (sum(((sum((sum(A, 2)), 1)) .* ((sum((sum(A, 2)), 1)) .* (sum(A, 2)))), 1))

naive 1-gram 2-gram 3-gram 4-gram 5-gram

Hardest possible
example to solve

9 10 14 13 14 >15

Overview

● How to represent computation
● How to search over computations
● Distributed representation of computation

The meaning of a word computation is
described by the words computations

accompanying it

How we can represent a computation?

● Vector representation for every computation
○ e.g. A^T = vector_1 , \sum(A^T, 1) = vector_2,

● Want to learn how to compose their vector
representations
○ i.e. ((A^T)^T)^T ~ vector_1, \sum(A, 2)^T ~ vector_2

Learnt representation with neural net
Recursive Neural network → RNN

No understanding of underlying mathematical
operators (no grounding)

Learnt representation with RNN
Recursive Neural network → RNN

No understanding of underlying mathematical
operators (no grounding)

Task - classify expressions
Example from A class:

Example from B class:

From which class is this example ?

Performance - expression classification

Degree k = 3 Degree k = 6

Test accuracy 100% 95.3%

Number of classes 12 1687

Learnt representation - tricks

● Initialization as identity + noise (critical)
● ReLU (previously people used tanh)
● Curriculum learning
● Prediction matrix has x100 learning rate
● We update initial random vector of symbol

RNNs for a better discovery learning

● We have a real vector representation for any
computations

● We use a linear classifier on such
representation to train scorer

Family sum(AA^T)_k with RNN
RNN gives more diversified solutions (doesn’t just copy them), but it doesn’t perform
as good as n-gram.
Targets → Exemplary solution of RNN:

● sum(A*A’) → (sum((A * ((sum(A, 1))')), 1))
● sum(A*A’*A) → ((sum(A, 1)) * ((A') * (sum(A, 2))))
● sum(A*A’*A*A’) → ((((sum(A, 1)) * (A')) * A) * ((sum(A, 1))'))
● sum(A*A’*A*A’*A) → ((sum(A, 1)) * ((A') * (A * ((A') * (sum(A, 2))))))

naive 5-gram RNN

Hardest possible
example to solve

10 >15 ~15

Summary

● Simple statistical priors over computations
like n-gram allows the discovery of many
new math formulae

● Use neural nets to map computational
expressions to continuous vectors
○ Also use for formulae discovery

Future work

● Computations = Knowledge representation =
Mathematical proofs = Programs = etc.
○ predictions on programs / program induction
○ explore space of mathematical proofs

● Replace recursive neural network with
recurrent ?

Q&A

● How to represent computation
○ symbolic representation

● How to search over computations
● Distributed representation of computation

○ recursive networks
○ training tricks

Thank you. I am happy to take any question.

